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Abstract: The spectral range between 1650 and 1700 nm is an interesting region due to its
potential applications in optical telecommunication and optical-based methane sensing. Unfortunately,
the availability of compact and simple optical amplifiers with output powers exceeding tens of milliwatts
in this spectral region is still limited. In this paper, a single-frequency continuous-wave bismuth-doped
fiber amplifier (BDFA) operating at 1651 and 1687 nm is presented. With the improved signal/pump
coupling and modified pump source design, the output powers of 163 mW (at 1651 nm) and 197 mW
(at 1687 nm) were obtained. Application of the BDFA to the optical spectroscopy of methane near
1651 nm is also described. We demonstrate that the BDFA can be effectively used for signal amplitude
enhancement in photothermal interferometry.

Keywords: optical amplifiers; doped fiber amplifiers; near-infrared; molecular gas spectroscopy;
photothermal spectroscopy; heterodyne detection

1. Introduction

Over the last few decades, fiber-based optical amplifiers have proven to be effective power
amplifiers with a number of advantages, such as high gain, a high output power, a low noise
figure, polarization independence, and broad amplification spectral bands. Fiber-based amplifiers are
capable of providing gain in numerous spectral regions, from the visible light to near-infrared region.
However, in some spectral regions, the availability of proper gain medium, fiber chemical composition,
and manufacturing issues are still critical problems. One of the research gaps is the spectral range
beyond 1650 nm, which can potentially be used not only to extend existing telecommunication windows,
but also in applications such as laser eye surgery [1,2] and the chemical sensing of hydrocarbons such
as methane [3–5] and ethane [6]. Thulium-doped fiber amplifiers (TDFAs) can be used in this spectral
region. However, because these wavelengths are at the edge of the thulium gain band, the highest
demonstrated saturation power near 1650 nm was less than 50 mW [7,8]. Raman amplifiers are capable
of providing much higher output powers, but require long (about 1 km or more) pieces of specialty
fiber [9] and very high (watt level) pumping powers [10]. In this respect, bismuth-doped fiber amplifiers
are interesting alternatives that may be used to obtain decent output powers (beyond 100 mW) in a
simple and compact configuration, similar to rare earth-doped amplifiers.
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Bismuth-doped fibers (BDFs) are an interesting group of active fibers that are capable of covering
spectral regions unavailable for rare-earth-doped fibers [11]. As Bi-doped fibers have luminescence
properties dependent on the host glass, they are a quite flexible medium for photonic system
development [12]. For example, broadband emission covering a range from 1150 up to 1500 nm
has been demonstrated using Bi-doped aluminosilicate and phosphosilicate glass fibers [13–16],
while Bi-doped germanosilicate fibers can also be used as gain media beyond 1600 nm [17–20].

This paper presents a continuation of our earlier experiments, in which the performance of
a bismuth-doped fiber amplifier (BDFA) at 1651 [21] and 1687 nm [22] was analyzed. Previously,
the output powers of ~87 and ~107 mW were obtained at 1651 and 1687 nm, respectively. These results
were limited by two issues. The first was stimulated Brillouin scattering (SBS) in BDF, which turned out
to affect the BDFA gain when high pumping powers were used [21]. The other issue was the efficiency
of coupling the signal (at 1651 or 1687 nm) and the pump (at 1550 nm). In this paper, a modified
configuration of the amplifier is demonstrated. Improved signal/pump coupling and a new pump
source enabled output powers of 163 mW (at 1651 nm) and 197 mW (at 1687 nm) to be obtained,
which are almost twice as high as those achieved with the previous amplifier design.

The paper is organized as follows. The second section describes the experimental setup. We present
a new pump source (Section 2.1) and demonstrate its impact on the reduction of backscattered light due
to SBS (Section 3.1). The performance of the BDFA (including the output power dependence on the pump
power and the input power at two wavelengths) is presented in Section 3.2. In Section 3.3, we show the
application of BDFA to photothermal spectroscopy of methane near 1651 nm. We demonstrate that this
technique (as well as fundamentally similar photoacoustic spectroscopy) can greatly benefit from using
optical power amplifiers for signal enhancement. Section 4 contains a discussion and conclusions.

2. Materials and Methods (Experimental Setup)

A schematic of the BDFA is shown in Figure 1. A 90 m-long germanosilicate BDF was used as
an active fiber (the same fiber was also used in our previous works [21,22]). The GeO2 content of the
fiber was ~50 mol.%. Although its core diameter was only 2.2 µm, it could be spliced to the standard
single-mode fiber with relatively low losses (below 1 dB). Bismuth doping combined with the presence
of Ge in the fiber core results in luminescence in the spectral region from 1600 to 1800 nm when the fiber
is pumped near 1.55 µm [11]. Therefore, the pump source was constructed using a continuous-wave
erbium-doped fiber laser (EDFL) amplified with a commercially available erbium/ytterbium-doped
fiber amplifier (EYDFA; model GOA-S320 from BKtel, with a maximum output power of 32 dBm).
A wavelength division multiplexing (WDM) coupler (from Haphit) was used to couple the pump light
into the BDF and out-couple the amplified signals from single-frequency laser diodes: A distributed
feed-back (DFB) laser diode was employed at 1651 nm (from NTT Electronics) and a discrete mode (DM)
laser diode was applied at 1687 nm (from Eblana Photonics). A polarization-insensitive fiber-based
optical isolator (from Opto-link) was placed between the seed source and the BDF to block any
backscattered radiation or unabsorbed pump light. It was designed to operate in the C and L band
(from 1530 to 1610 nm), but its transmission at longer wavelengths was still relatively high (more than
85% at 1651 nm and ~75% at 1687 nm, including connectors).
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pumped using a 974 nm laser diode (from JDSU). A fiber Bragg grating (FBG) was placed inside the 

ring cavity to make sure that EDFL operated near 1550 nm. The spectrum of the FBG is shown in 

Figure 3a and the 3 dB bandwidth was ~36 GHz. An optical circulator (from Opto-link) was used not 
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Figure 1. Bismuth-doped fiber amplifier (BDFA) setup: SEED—seed laser diode; ISO—fiber isolator’
BDF—bismuth-doped fiber; WDM—wavelength division multiplexing coupler; EYDFA—erbium-
ytterbium-doped fiber amplifier; and EDFL—erbium-doped fiber laser (see Section 2.1).

2.1. 1.55 µm Pump Source

As mentioned in the introduction, the main limitation of our previous BDFA configuration was
SBS in the bismuth-doped fiber. This phenomenon was affecting the efficiency of BDFA. We believe
that, due to backscattering that was observed for high pumping powers, part of the BDF was not
pumped sufficiently, so the overall gain was reduced. As a result, the achievable output power was
limited. The SBS was observed because a narrowband distributed feed-back (DFB) laser diode (LD)
was used as a seed for EYDFA. Therefore, the simplest way to increase the SBS threshold was to use a
spectrally broad source which was broader than the gain bandwidth associated with the SBS [23,24].

The schematic diagram of an erbium-doped fiber laser (EDFL) used as a BDFA’s pump source
is shown in Figure 2. A 10 m-long erbium-doped fiber (EDF; model M5-980-125 from Thorlabs) was
pumped using a 974 nm laser diode (from JDSU). A fiber Bragg grating (FBG) was placed inside the
ring cavity to make sure that EDFL operated near 1550 nm. The spectrum of the FBG is shown in
Figure 3a and the 3 dB bandwidth was ~36 GHz. An optical circulator (from Opto-link) was used not
only to insert the FBG into the laser cavity, but also to force a unidirectional operation. An optical
coupler (50:50) was used as an output of the laser. Approximately 10 mW of optical power at 1550 nm
was obtained with a pump power (at 974 nm) of ~60 mW. Figure 3b shows the optical spectrum emitted
from the EDFL with a 3 dB bandwidth of ~4 GHz.
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Figure 2. Erbium-doped fiber laser used as a new pump source for BDFA: EDF—erbium-doped fiber;
CIRC—optical fiber circulator; FBG—fiber Bragg grating; and FC—fiber coupler.

For comparison, a linewidth of the DFB laser diode used in our previous configurations was also
measured. A self-heterodyne method [25] was used, in which light emitted from a narrow-linewidth
laser is divided into two beams. One is frequency-shifted by Ω and delayed using an optical fiber
(the fiber must be longer than the coherence length of the source under study). This beam is then
coupled with the second beam (emitted directly from the source) and the beatnote signal at Ω is
analyzed using a radio frequency (RF) spectrum analyzer. Figure 4c shows the RF spectrum recorded
using a 1550 nm DFB laser diode as a source and a 600 m-long delay line. Based on this measurement,
the linewidth (full width at half maximum) of the pump source used in our previous configurations
was estimated to be approximately 1.1 MHz. This is much lower than typical values of the SBS gain
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bandwidth [26] and more than three orders of magnitude less than the linewidth of the fiber laser used
in this work.
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Figure 4. (a) Experimental setup used to measure the optical power of light backscattered in the BDF: 

PM—power meter. A WDM coupler was used to block backscattered amplified spontaneous emission 

(ASE), as indicated with blue arrows; (b) dependence of the backscattered output power on the input 

power for two light sources; (c) spectra of backscattered light recorded with a 0.1 nm resolution for 

two different input power levels. The peak frequency shifted by ~9.5 GHz that appears for a higher 

power is clear evidence of stimulated Brillouin scattering (SBS). 

Figure 3. (a) Fiber Bragg grating reflectivity near 1550 nm (3 dB bandwidth is ~36 GHz); (b) output
spectrum of the EDFL emission (3 dB bandwidth of ~4 GHz); (c) the result of the self-heterodyne
linewidth measurement [25] shows the RF spectrum of the beatnote signal around Ω = 200 MHz. Based
on this measurement, the linewidth ∆f of the distributed feed-back (DFB) diode was estimated to be
~1.1 MHz.
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Figure 4. (a) Experimental setup used to measure the optical power of light backscattered in the BDF:
PM—power meter. A WDM coupler was used to block backscattered amplified spontaneous emission
(ASE), as indicated with blue arrows; (b) dependence of the backscattered output power on the input
power for two light sources; (c) spectra of backscattered light recorded with a 0.1 nm resolution for two
different input power levels. The peak frequency shifted by ~9.5 GHz that appears for a higher power
is clear evidence of stimulated Brillouin scattering (SBS).

3. Results

3.1. SBS Suppression with the New Pump Source

To verify that with the new source, the SBS threshold is reduced, we built the setup shown in
Figure 4a. An optical circulator was used to couple the amplified light into a BDF. The third port of the
circulator was used to measure the power of the backscattered radiation. Additionally, a WDM coupler
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was employed between the circulator and BDF to block backward amplified spontaneous emission
(ASE). First, the light from a narrow-linewidth DFB laser diode was used as a seed source for EYDFA.
Subsequently, the DFB laser diode was replaced with a new EDFL source. Figure 4b shows how the
backscattered optical power depends on the input power (i.e., at the output of the EYDFA) for both
seed sources.

In both cases, we observed some linear dependence between the input power and the output
(backscattered) power. This might be due to Rayleigh scattering, residual reflection from the splices
or connectors, or cross-talk between the 1st and 3rd port of the circulator. However, when a DFB
laser diode was used as a seed and the EYDFA power exceeded approximately 27 dBm (~500 mW),
SBS became visible. It manifested itself through a rapid, nonlinear increase of the backscattered light
power level. This phenomenon was not observed when EDFL was used as a source, even for much
higher input powers (up to 32 dBm). The presence of the SBS was additionally confirmed by measuring
the spectrum of the backscattered radiation. For a higher input power, a signal frequency shift of
~9.5 GHz was observed, which is expected for Brillouin scattering in a silica fiber doped with Ge [27].

3.2. BDFA Performance

In Figure 5, we present the performance of the BDFA. Figure 5a shows how the output power
depends on the pump power for two seed wavelengths: 1651 and 1687 nm. In both cases, an almost
linear dependence was obtained for a pump power up to 32 dBm (~1.58 W). The BDFA output power
dependence on the seed laser power is shown in Figure 5b. For the highest pump power and the
highest available seed power at 1651 nm (15.54 mW), the output power of 163 mW (or 22.1 dBm) was
obtained. For a longer wavelength (i.e., 1687 nm), the measured power was even higher: 197 mW
(or 22.94 dBm) when a seed power of 5.48 mW was used. These results are almost two times better
than those demonstrated previously (87 mW at 1651 nm in [21] and 107 mW at 1687 nm in [22]).
The measured gain (shown in Figure 5c) varied from 26 dB (for a low input power at 1687 nm) to
approximately 10 dB (for a high input power at 1651 nm).
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Figure 5. (a) BDFA output power versus pump power at 1651 and 1687 nm. (b) and (c) BDFA output
power and gain versus seed power at both wavelengths for a pump power of 32 dBm.

The optical spectra recorded when the BDFA was seeded with a 1651 and 1687 nm laser diode are
shown in Figure 6. In both cases, the maximum pump power (32 dBm) was used. A very significant
power level difference (more than 40 dB) between the signal and the amplified spontaneous emission
(ASE) was obtained. For comparison, the spectra of the two seed sources are also shown in Figure 6a.

Figure 7 presents the stability of the output power of BDFA. It was measured using a power meter
(PM100D from Thorlabs with S132C sensor) and a 1651 nm seed laser diode. The input power and
the pump power were set to 10.1 and 30 dBm, respectively. The output power was recorded for more
than 30 min. The peak-to-peak fluctuations were ~0.32% of the mean value (95.5 mW). Similar output
power fluctuations were obtained when lower input powers were used (Figure 7b,c).
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3.3. Photothermal Spectroscopy Using a BDFA-Amplified Source

In order to demonstrate how BDFA can be used in laser spectroscopy, a setup that enables
photothermal spectroscopy (PTS) to be performed was built. PTS can be used to detect and quantify
gas samples by observing indirect effects of light–matter interaction. Energy absorbed by gas is
turned to heat, leading to a local rise of the gas temperature and change of the gas refractive
index. The refractive index change can be measured using, e.g., an interferometric setup [28,29].
Because the photothermal signal is proportional to the absorbed energy, an optical amplifier can be
used to improve the performance of PTS. This was previously demonstrated using photoacoustic
spectroscopy (a technique which is fundamentally similar to PTS) performed in a more convenient
telecom wavelength region (below 1.6 µm, where erbium-doped fiber amplifiers can be used) [30–34].
Here, we show BDFA-enhanced PTS of methane using the setup schematically shown in Figure 8.
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The light emitted from a 1651 nm DFB laser diode was amplified with the BDFA and entered the
gas sample (enclosed in a glass cell) through a 90:10 fiber coupler. The DFB laser diode was current
modulated with a sinewave (f m = 0.5 kHz) to produce periodic changes of the refractive index inside
the gas cell. These changes were measured using an interferometer formed between two fiber couplers
(90:10 and 50:50). Additional saw-tooth modulation (1 Hz) was added to provide a wavelength scan
across the target transition. The light from the 1550 nm DFB laser diode was used as a probe beam.
An acousto-optic frequency shifter/modulator (AOM) driven at f a = 200 MHz was placed in one arm
of the interferometer, enabling heterodyne detection of the photothermal signal: Changes of the optical
length in one arm were detected as changes of the phase of the heterodyne signal. The main advantage
of heterodyne-based detection [35] compared to homodyne-based sensing is that a heterodyne-based
setup does not require the arms of the interferometer to be stabilized [36,37]. A high-speed lock-in
amplifier (UHFLI from Zurich Instruments) was used to perform phase demodulation of the beat note
at 200 MHz, as well as subsequent signal demodulation (filtering) at 2 × f m (this helps with removing
background signals due to, e.g., non-resonant absorption in the setup).
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Figure 8. Heterodyne interferometric setup for photothermal gas detection.

Figure 9a shows the PTS spectra measured for a 100 mm-long sample containing 4.29% methane
(balanced with nitrogen, total pressure of 740 torr; the concentrations was determined based on direct
absorption measurement and spectral fitting with data from the HITRAN database [38]). Four different
powers at the output of BDFA were used (the optical power was measured after the collimator and
before the gas cell). 2f PTS spectra are baseline-free and their amplitude clearly depends on the
optical power.

A linear dependence between the signal to noise ratio (SNR) and the optical power level was also
confirmed, as shown in Figure 9b. For this measurement, a shorter gas cell (25 mm) was used (with a
methane concentration of approximately 5.35%). The signal was measured as the 2f PTS amplitude
at the transition center and the noise was calculated as the standard deviation of the signal recorded
when the sample was removed from the setup. Based on this measurement (i.e., SNR ≈ 52 for the
incident power of ~120 mW), we could calculate the noise equivalent concentration, which was shown
to be approximately 19.3 ppm × m × Hz−1/2, corresponding to the noise equivalent absorbance of
~7.2 × 10−4 Hz−1/2. This result is comparable to the sensitivity demonstrated previously with a similar
method [35]. We expect that a significantly better detection limit could be obtained if photothermal
spectroscopy was performed inside a hollow core fiber [36,37].
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Figure 9. (a) 2f photothermal spectroscopy (PTS) signals for various incident power levels for a
100 mm-long cell with a methane concentration of 4.29%. A 1 Hz saw-tooth modulation was used to
scan the wavelength across the methane transition near 1651 nm. (b) The dependence of the 2f PTS
signal/noise ratio on the incident power at 1651 nm; the signal was measured using a 25 mm-long cell
with a methane concentration of 5.35%.

4. Discussion

In this paper, the bismuth-doped fiber amplifier was presented. The new fiber-based pump source
helped to suppress the unwanted SBS (observed in the previous setup) and enabled the delivery of a
much higher pumping power (up to almost 1.6 W) to the BDF compared to the configuration presented
in [21,22]. The performance of the amplifier was analyzed at two wavelengths: 1651 and 1687 nm.
The output powers of 163 mW (1651 nm) and 197 mW (1687 nm) were obtained. These power levels are
almost two times higher than those demonstrated earlier with the previous BDFA configuration [21,22].
More importantly, the linear dependence between the output power and the pump power suggests that
a further increase of the output power should be possible when a higher pump power level is used.

In addition to the high power at the output, the BDFA presented in this paper also offers a
significant small signal gain: 18 dB at 1651 nm and 26 dB at 1687 nm. These values are higher
than previously published for BDFAs [17] and also higher then reported for the short-wavelength
Al/Tm-doped fiber amplifier presented in [7]. A similar small signal gain was obtained in [8], where a
Ge/Tm-doped fiber was used.

A comparison of the presented BDFA with some previously demonstrated amplifiers is presented
in Table 1. The BDFA reported in this work uses a longer fiber than Tm-doped fiber amplifiers,
but provides a higher output power while requiring a smaller pump power.

Table 1. Summary of the parameters of various previously reported fiber amplifiers operating near
1650 nm and the results obtained in this work.

Ref. Fiber Type Fiber Length Pump Power Small Signal Gain Output Power
@1650 nm @1650 nm

[7] Al/Tm-doped 5 m 37 dBm 8 dB 8 dBm
[8] Ge/Tm-doped 4.5 m 36.9 dBm 18.7 dB 15 dBm

[17] Ge/Bi-doped 50 m 24.77 dBm ~5 dB
10 dBm

(@1680 nm)
This work Ge/Bi-doped 90 m 32 dBm 18 dB 22.1 dBm

We also analyzed the noise at the output of the amplifier. Output power fluctuations below 1%
were obtained not only for high, but also for low, input powers. These features (high gain and output
power stability for low input powers) make the presented BDFA an attractive booster amplifier in the
wavelength region that cannot be easily covered by semiconductor amplifiers.

As a potential application of BDFA, we have presented the photothermal spectroscopy of methane
at 1651 nm. We have demonstrated that the amplifier can be used to improve the signal amplitude and
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signal/noise ratio. Similar sensitivity enhancement can be expected when more common photoacoustic
spectroscopy is used [39,40].
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