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Abstract
Numerical analysis of dispersion and nonlinear characteristics of photonic
crystal fibres (PCFs) with a small number of hole rings and large
(>20 mol%) concentrations of GeO2 in the core is performed. It is shown
that by proper choice of the fibre design and, in particular, the diameter of a
doped core and the GeO2 concentration, it is possible to obtain a high
nonlinearity coefficient simultaneously with the desired dispersion
characteristic and to realize efficient parametric frequency conversion with
large Stokes shifts at a pump in the vicinity of 1.1 μm.

Keywords: photonic crystal fibres, dispersion, nonlinearity coefficient,
parametric frequency conversion

1. Introduction

A remarkable variety of dispersion characteristics was
demonstrated lately in silica photonic crystal fibres (PCFs)
[1–7]. By changing the air hole structure, it is possible to
shift the zero dispersion wavelength up to the green region
[2, 3], to obtain the ultra-flattened nearly-zero dispersion over
a wide wavelength range around 1.5 μm [4–6] and to form
the dispersion shape with two or more zeros [6, 7]. Unique
properties of silica PCFs often allow the desired dispersion
shape to be achieved simultaneously with a small effective
mode area and, correspondingly, a large nonlinear coefficient
γ = 2πn2/(λAeff) (n2 is the nonlinear refractive index, λ is
the wavelength and Aeff is the effective mode area). Thus, γ

values of about 95 (W km)−1 were obtained in the vicinity of
the zero dispersion wavelength at 750 nm in the silica PCF
[8]. Such nonlinear coefficients make it possible to use short
fibre lengths of a few tens of metres for parametric frequency
conversion and amplification of optical signals. At these fibre
lengths, it is much easier to obtain a high optical quality,
which is necessary to satisfy strict phasematching condition
for a four-wave mixing (FWM) process. In particular, the
most dangerous long-period fluctuations of fibre parameters
along the fibre can be avoided [9]. However, achieving large

γ values at zero dispersion wavelengths longer than 1 μm
remains difficult in pure silica PCFs. This comes from the
need for an increase in the hole-to-hole spacing or a decrease
in the hole diameters to obtain the zero dispersion at longer
wavelengths. Such structure changes are accompanied by an
increase in the effective mode area [10].

It has been shown recently that PCFs with a germanosili-
cate core are very promising for obtaining the desired disper-
sion curve, while keeping a small effective mode area [11].
On the one hand, the GeO2 dopant is known to enhance non-
linear properties of silica and, on the other, it shifts the zero
dispersion to the long-wavelength region not so significantly
as compared to lead silicate and tellurite fibres. In the latter
fibres with much higher nonlinear coefficients, it is difficult to
achieve the shift of the zero dispersion wavelength to the re-
gion shorter than 1.5 μm. In [11], fibres had 12 rings of air
holes and a germanium-doped core region. An increase in the
nonlinear coefficient of up to 11.2 (W km)−1 at a very low dis-
persion slope of 0.001 ps nm−2 km−1 at 1.55 μm was shown
to be possible with this fibre design.

In this paper, we made numerical modelling of the
dispersion and nonlinear characteristics of the PCFs containing
only 2–4 rings of holes and large (>20 mol%) GeO2

concentrations in the core. Our analysis of the dispersion
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Figure 1. The cross sections of the studied fibres: (a) with two rings of holes (d1/� = d2/� = 0.9); (b) with three rings of holes
(d3/� = 0.9); (a) with four rings of holes (d3/� = d4/� = 0.9).

and nonlinear characteristics was applied to obtain FWM with
Stokes shifts of 2000–3000 cm−1 at a pump in the region of
1.1 μm. A fibre converter with such large frequency shifts
makes it possible to realize frequency conversion between
telecommunication bands at 0.85 μm and at 1.3 or 1.5 μm.
It was shown that by properly choosing the diameter of a
doped core and the GeO2 concentration, it is possible to obtain
a high nonlinearity coefficient simultaneously with a desired
dispersion characteristic and to realize efficient parametric
frequency conversion in this wavelength region.

2. Analysis method

A precise control of dispersion and waveguide characteristics
is necessary to make the FWM process with large Stokes shifts
effective. With single-mode PCFs, it became possible. To
illustrate this, we consider the well-known relations of the
FWM process [12]. The conversion efficiency at the Stokes
wavelength, neglecting pump depletion and losses, is written
as

G = Ps(L)

Pa(0)
=

(
1 +

(
�k1

2g

)2
)

sinh2(gL) (1)

where

g =
√

(γ Pp)2 −
(

�k1

2

)2

(2)

�k1 = �k + 2γ Pp. (3)

Pp is the pump power at the frequency ωp; Pa, Ps are the signal
powers at the anti-Stokes frequency ωa and at the converted
Stokes frequency ωs = 2ωp − ωa, respectively; L is the fibre
length.

The difference of the propagation constants of the
interacting waves is �k = βa + βs − 2βp, where βa, βs and
βp are the propagation constants of the anti-Stokes, the Stokes
and the pump waves, respectively, and the nonlinear term 2γ Pp

contributes to the phase mismatch �k1.
Expanding �k = βa + βs − 2βp in Tailor’s series near the

pump frequency yields

�k = 2
∞∑

m=1

β2m
(ωs − ωp)

2m

(2m)! (4)

where β2m = d2m k
dω2m |ωp are the 2m-order dispersion coefficients

at the pump frequency.

The phasematching of wavevectors �k1 = 0 is necessary
to maximize the amplification coefficient g. From (3), we
should have �k < 0. For not too large Stokes shifts, we can
use only the first term in (4), which depends on the second-
order dispersion β2. It can be represented near zero dispersion
wavelength λ0 as

�k = −2πc

λ2
p

dD

dλ

∣∣∣∣
λ0

(λp − λ0)(λs − λp)
2 (5)

where D = −(2πc/λ2)β2, and λp and λs are the pump and the
Stokes wavelengths, respectively.

As follows from (5), the phasematching is possible only
in the region of anomalous dispersion β2 < 0, where λp > λ0.
Close to the second-order dispersion zero, it is fully defined
by the nonlinear term 2γ Pp. But for large frequency shifts
(ωs − ωp), the phase mismatch �k in (5) becomes too large
even at a small displacement of the pump wavelength from the
zero wavelength to be compensated by a nonlinear term 2γ Pp.
However, considering the contribution of the higher dispersion
terms in (4), which have different signs, it can be shown [13]
that the pump wavelengths, for which the phasematching
condition is satisfied, exist in the normal dispersion region.
Here, the phasematching condition is defined mainly by
the fibre dispersion characteristics and weakly depends on
2γ Pp (�k1 ≈ �k = 0). This affords tuning the phasematched
Stokes frequencies by shifting the pump wavelength to the
left from the dispersion zero. In single-mode fibres, this
tuning band is close to the zero dispersion wavelength and
is rather narrow, a few tens of nanometres. Therefore, in the
PCFs, which permit shifting the dispersion zero to the short
wavelength band, the phasematching is possible for pumps in
the region of 1.1 μm [13]. Moreover, the PCFs allow obtaining
the dispersion shape with two zeros in the wavelength range
0.8–1.5 μm. The wavelength region between two zeros
belongs to the anomalous dispersion region and can be varied
over hundreds of nanometres by changing the fibre parameters.
As shown in [8], the phasematching for large Stokes shifts with
a weak dependence on 2γ Pp is also possible in this region.

We studied two types of PCFs with a germanosilicate core
shown in figure 1.

The first one had two rings of the holes with a large
ratio of the hole diameter d to the pitch �, d/� = 0.9
(figure 1(a)). For this fibre, our analysis was made for two
GeO2 concentrations in the core, 24 and 50 mol%.
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Figure 2. The dispersion (a) and the effective mode area (b) as
functions of the wavelength at different scaling coefficients M in a
two-ring fibre with the silica core. M = 1: d/� = 0.9 and
� = 3.1 μm.

The structure of the second type, shown in figures 1(b)
and (c), consisted of 3–4 hole rings and the core doped with
24 mol% GeO2. For the first two inner rings, the value of d/�

could be changed. For the third and the fourth outer rings, it
was unchangeable: d3/� = d4/� = 0.9.

The calculation of dispersion characteristics was made
by the finite element method, using the commercial Matlab–
Femlab package. The perfectly matched layers were inserted
for the evaluation of the confinement loss [7, 14]. For
optimization of the dispersion characteristics in the PCFs with
different d/� in the rings, we applied a Genetic Algorithm
(GA) [18, 19]. The variation parameters were the diameter
of the germanosilicate core dGeO2 , the hole diameters in the
first two rings d1, d2 and the pitch �. The dispersion shape
was optimized, taking into account the magnitude of the
phasematched Stokes shifts, which can be obtained with this
shape. As a rule, the initial population of ten individuals
and 15–16 generations were employed to obtain the desirable
dispersion profile. For calculation of the Stokes shifts, which
satisfy the phasematching condition (3), we used the higher-
order dispersion terms, up to eighth order in expansion (4).

3. PCFs with one dispersion zero

The obvious advantage of PCFs with a large d/� is a low
confinement loss at a small number of rings. In a fibre

Figure 3. The dispersion (a) and the effective mode area (b) as
functions of the wavelength at different scaling coefficients M in a
two-ring fibre with the 24 mol% GeO2-doped core. M = 1:
d/� = 0.9, � = 3.1 μm, and dGeO2 = 1.2 μm.

with the two rings of holes in hexagonal symmetry, the
confinement loss is less than 1 dB km−1 in the wavelength
range 0.8–1.6 μm [15]. The smallest effective mode area can
be achieved also with these fibres, as they potentially have the
largest effective refractive index and the smallest core diameter
(dcore = �(2−d/�)). With d/� � 0.9, broad control
of dispersion is possible only through scaling (a proportional
change of dcore, d and � with d/� being unchanged), and
obtaining a complicated shape of the dispersion curve is
difficult. Nevertheless, by scaling, the dispersion with a single
zero in the region of 1.1 μm is easy to obtain.

Figures 2 and 3 show the dispersion curves and the
effective mode area at different values of scaling parameter
M (the coefficient of the proportional change of the original
structure for which M = 1), calculated for the two-ring PCFs
with d/� = 0.9 in both rings. The dispersion characteristic
of the pure silica PCF, shown in figure 2(a), experiences an
essential shift towards the long-wavelength region only at a
significant increase of the scaling parameter M . At M = 0.6,
the effective mode area is Aeff = 2.2 μm2 and the nonlinear
coefficient is γ = 77 (W km)−1 at the zero wavelength
λ0 = 0.77 μm, taking the nonlinear refractive index for silica
n2 = 2.16 × 10−16 cm2 W−1 [16]. The zero wavelength
is close to 1.1 μm at M = 2, where Aeff = 22 μm2 and
γ = 5.6 (W km)−1. Thus, a three-to fourfold increase of M
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Figure 4. The dispersion (a) and the effective area (b) as functions of
the wavelength at different diameters dGeO2 of the 24 mol%
GeO2-doped core, � = 3.1 μm, and d/� = 0.9.

is necessary to shift the zero wavelength from the region 0.8
to 1.1 μm. Such an increase is accompanied by increasing
the effective mode area and accordingly by decreasing the
nonlinear coefficient by more than one order of magnitude.

Contrary to that, as was shown in figure 3, for a PCF with
the 24 mol% GeO2-doped core, having the ratio of the doped
part to the core diameter dGeO2/dcore = 0.35, the dispersion
zero shifts to the 1.1 μm region already at M = 1. The
effective mode area is 4.2 μm2 and γ = 40 (W km)−1

at 1.1 μm. While evaluating γ , we took n2 = 2.95 ×
10−16 cm2 W−1, using its empirical dependence on GeO2

concentration, given in [16]. Hence, at this zero dispersion
wavelength, the nonlinear coefficient in the PCF with the
24 mol% GeO2-doped core is seven times higher than in the
PCF with the silica core.

Figures 4 and 5 demonstrate how dispersion and mode
field characteristics change with the diameter of a doped core
dGeO2 and with the GeO2 concentration. Increasing dGeO2 at
fixed � and d results in a shift of the dispersion first to a
longer and then to a shorter wavelength region. Contrary to
an influence on the dispersion slope of the scaling parameter
shown in figures 2 and 3, the dispersion slope is defined
mostly by changes in the short wavelength region at changing
dGeO2/dcore. This follows from the competition between
waveguiding properties, defined by the germanosilicate core
and the geometry of holes. In the extreme cases, when
dGeO2/dcore � 1 or dGeO2/dcore ∼ 1, waveguiding properties
are defined by the hole geometry, which manifests itself first
of all in the longer wavelength region, where the mode field
diameter is larger. For intermediate values of dGeO2/dcore, the

Figure 5. The dispersion (a) and the effective area (b) as functions of
the wavelength at different diameters dGeO2 of the 50 mol%
GeO2-doped core, � = 2.48 μm, and d/� = 0.9.

largest changes are in the shorter wavelength region, where
the germanosilicate core with a core–cladding refractive index
difference �n = nSiO2/GeO2 − nSiO2 localizes the fundamental
mode well. Figure 4 shows that the influence of the doped
core is maximum at dGeO2 = 1.2 μm for 24 mol% GeO2

and � = 3.1 μm. The shift of the dispersion zero to the
longer wavelength region is the largest (λ0 = 1.1 μm) and
the nonlinear coefficient at 1.1 μm is the highest at these fibre
parameters. With decreasing the pitch from the optimal value
of � = 3.1, the dispersion curves with different dGeO2 will
have λ0 < 1.1 μm, and with its increasing, the effective mode
area will be larger.

As seen from figure 5, the dependence of the zero
wavelength dispersion shift on the parameters � and dGeO2

is even more sharp for 50 mol% GeO2 in the core. The
same shift can be obtained here at smaller � and, respectively,
a smaller effective mode area in comparison with 24 mol%
GeO2 in the core. The dispersion zero is close to 1.1 μm at
� = 2.48 μm and dGeO2 = 1.6 μm. The effective mode
area at this wavelength is found to be Aeff = 2.24 μm2

and the nonlinear coefficient is γ = 97 (W km)−1, taking
n2 = 3.81 × 10−16 cm2 W−1 for this concentration.

As follows from the results, shown in figures 2–
5, the GeO2 concentration and the dGeO2/dcore ratio are
additional structural parameters, allowing accurately tuning the
dispersion zero, the dispersion slope and the effective mode
area.
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Figure 6. The phasematched wavelengths of a Stokes–anti-Stokes
pair as functions of pump wavelength calculated for the two-ring
fibre with the 24 mol% GeO2-doped core, d/� = 0.9,� = 3.1 μm,
and dGeO2 = 1.2 μm.

Figure 6 shows the dependence of the phasematched
Stokes–anti-Stokes wavelengths on the pump wavelength
calculated for the fibre with 24 mol% GeO2 in the core,
dGeO2 = 1.2 μm and � = 3.1 μm. At this phasematched
diagram, the Stokes shift of 2632 cm−1 can be found at
λp = 1.106 μm, which makes the wavelength conversion
from 857 to 1560 nm possible. For an ideal case of constant
parameters along the fibre, the evaluation of FWM efficiency
in accordance with (1)–(4) gives 10 dB amplification for the
converted signal at the pump power of 1 W and the fibre length
of 50 m.

4. PCFs with two dispersion zeros

For achieving efficient FWM with Stokes shifts of about
2000–3000 cm−1, the PCFs with two dispersion zeros are very
promising [8, 17]. Their main advantage is a low dispersion
slope in a broad wavelength range which could make it easier
achieving phasematching for large Stokes shifts. Such fibres
have a more complicated structure, because they should have
a larger number of rings with small and, as a rule, different
values of d/�. By using GA, we analysed the simplest design
of three-ring PCFs with variable d/� only in the first two rings.

Figure 7(a) shows how the dispersion characteristic with
two zeros (curve (f1)) obtained in the PCF with 24 mol%
GeO2-doped core, � = 1.35 μm, dGeO2 = 1.4 μm, d1/� =
0.46, d2/� = 0.42, and d3/� = 0.9, changes with
the diameter of the doped core dGeO2 and with the scaling
parameter M . With dGeO2 varying, the dispersion curve varies
without a noticeable shift of its maximum on the wavelength
scale. With M varying, both the dispersion maximum and
its position on the wavelength scale are changed. From
figure 7(b), we see some relation between the dispersion
changes and the calculated wavelengths for the phasematched
Stokes–anti-Stokes pair. Contrary to the two-ring fibre
considered above, the dispersion slope is lower in this PCF
and approaches zero at the dispersion maximum. For such a
specific dispersion shape, the phasematching for large Stokes
shifts is possible for the pump wavelengths, positioned in
the region of anomalous dispersion between the two zeros.

Figure 7. The dispersion (a), the phasematched Stokes–anti-Stokes
wavelengths (b) and the confinement loss (c) as functions of the
wavelength for the fibre (f1) with 24 mol% GeO2-doped core,
� = 1.35 μm, dGeO2 = 1.4 μm, d1/� = 0.46, d2/� = 0.42 and
d3/� = 0.9, and for the pure silica fibre (f2) with
� = 1.74 μm, d1/� = 0.47, d2/� = 0.22 and d3/� = 0.9.
Influence of the parameters dGeO2 and M on the dispersion and the
phasematched Stokes–anti-Stokes wavelengths in fibre (f1) is also
shown.

The dependence of the Stokes shifts on the pump wavelength
has a maximum. Its value correlates with the value of the
dispersion maximum and the wavelength interval between two
zeros. Obviously, the maximal Stokes shifts are best suited
for parametric conversion. The Stokes shift dependence on the
pump wavelength is the weakest near the maximum, hence the
wider wavelength band is possible for the pump.

720



Parametric frequency conversion in photonic crystal fibres with germanosilicate core

For the fibre (f1), the maximal Stokes shift is 2700 cm−1

at the pump wavelength 1.11 μm, which corresponds to the
signal wavelength conversion from 854 to 1585 nm. The
effective mode area at the pump wavelength is 2.5 μm2 and
the nonlinear coefficient is γ = 67 (W km)−1.

We compared the effective mode areas for the PCFs
with a germanosilicate core and a silica core at the similar
dispersion characteristics. The dispersion characteristic with
a minimal deviation of the Stokes shifts from the PCF with
a germanosilicate core (f1) was found, by using GA, for
the pure silica fibre (f2) with parameters � = 1.74 μm,
d1/� = 0.47, d2/� = 0.22 and d3/� = 0.9. We did not
succeed in obtaining for (f2) an identical to (f1) dispersion
shape by varying parameters in two rings. The dispersion
curve for (f2) has a lower maximum value and a larger interval
between two zeros. Obviously, pure silica PCFs need more
rings for varying parameters in comparison with PCFs with
a germanosilicate core to obtain the same dispersion profile.
For (f2), the effective mode area is 5.7 μm2 and the nonlinear
coefficient is γ = 21.4 (W km)−1 at the pump wavelength of
1.11 μm, which is three times lower than in the PCF with a
germanosilicate core (f1).

Figure 7(c) shows the confinement loss in the fibres (f1)
and (f2). For the fibre with a germanosilicate core, the
losses are significantly lower in the short wavelength region
<1.3 μm, even though this fibre has the smaller �. In the long
wavelength region, losses become too large for both fibres.

Our calculations show that the same dependence of the
phasematched Stokes shifts on the pump wavelength can be
obtained at different fibre parameters. Figure 8 demonstrates
the three dispersion curves, with which the maximal Stokes
shift of 2553 cm−1 is possible at a pump wavelength of
1.11 μm. The curves were obtained with dGeO2 = 1.2 μm
by varying �, d1 and d2. The dispersion curves with smaller �

have a smaller effective mode area, but a higher confinement
loss. As was seen from figure 8(c), the sharp increase of losses
in the region of 1.5 μm occurs even for fibre (f1) with a large
hole-to-pitch value in the second ring d2/� = 0.84.

Since three-ring PCFs have a large confinement loss for
the Stokes radiation in the region of 1.5 μm, we studied
the influence of the fourth ring with a large value of d4/�

on the dispersion and waveguide characteristics. The typical
result is shown in figure 8 for the fibre (f1), for which the
smallest effective area Aeff = 1.78 μm2 corresponding to
γ = 94 (W km)−1 was found. The addition of the fourth ring
with d4/� = 0.9 had no noticeable effect on the dispersion
characteristic up to the wavelength region of 1.6 μm, but
essentially (by three orders of magnitude) decreased the
confinement loss. According to our estimates made at fixed
structural parameters along the fibre, the PCF with d4/� = 0.9
and with the other parameters identical to those of fibre (f1)
allows parametric wavelength conversion of the signal from
866 to 1552 nm with amplification of 10 dB at the pump power
of 1 W at 1.11 μm and the fibre length of 20 m.

5. Conclusion

In conclusion, we have demonstrated numerically that in
a technologically simple design of two-ring PCFs with
equal holes, the germanosilicate core significantly extends

Figure 8. The dispersion (a), the Stokes shifts (b) and the
confinement loss (c) for three-ring fibres with the same value for
maximum Stokes shifts. (f1) � = 1 μm,dGeO2 = 1.2 μm,
d1/� = 0.415, d2/� = 0.84 and d3/� = 0.9; (f2) � = 1.35 μm,
dGeO2 = 1.2 μm, d1/� = 0.5, d2/� = 0.4 and d3/� = 0.9; (f3)
� = 1.5 μm, dGeO2 = 1.2 μm, d1/� = 0.54, d2/� = 0.19 and
d3/� = 0.9. The dispersion and the confinement loss for the
four-ring fibre with d4/� = 0.9 in the fourth ring and with
parameters in the first three rings identical to those of fibre (f1) are
shown in the inset of (a) and in (c), respectively.

the possibility of controlling dispersion and nonlinear
characteristics. In particular, in the zero wavelength region
of 1.1 μm, nonlinear coefficients of 40 (W km)−1 and
97 (W km)−1 can be achieved in a PCF with 24 mol% GeO2

and 50 mol% GeO2, respectively. These γ values appear to be
unachievable in pure silica PCFs with the same design of the
holes.
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In the second type of three-or four-ring PCFs with unequal
hole diameters in different rings, we performed an optimization
of the dispersion curves with two zeros with the aim to realize
FWM with Stokes shifts of 2000–3000 cm−1 in the anomalous
dispersion region. Nonlinear coefficient γ = 94 (W km)−1 can
be achieved for an optimized dispersion in a PCF with 24 mol%
GeO2-doped core. The germanosilicate core was shown to
reduce an effective mode area and number of rings with
the parameters varying for obtaining the necessary dispersion
shape. A more than threefold increase of γ is expected
for the same phasematched Stokes–anti-Stokes diagram in a
fibre with the 24 mol% GeO2-doped core as compared to
the pure silica core fibre of the same design. However, the
presence of a germanosilicate core in a three-ring fibre does
not lead to a significant decrease in the confinement loss in
the Stokes wavelength region of 1.5 μm. For reducing losses
to ∼1 dB km−1 for wavelengths longer than 1.2 μm, a fourth
ring with a large hole-to-pitch ratio d4/� should be added.

For both of the PCFs types with the 24 mol% GeO2-
doped core, the possibility of efficient parametric conversion
with Stokes frequency shifts of 2000–3000 cm−1 at continuous
pump powers in the region of 1.1 μm with fibre lengths of only
20–50 m was shown.
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